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Abstract

A new general implicit procedure that guarantees the positivity of turbulence model equations dependent variables is
presented. The implicit procedure is based on designing the implicit Jacobian to be an M-matrix. A unified approach for
the treatment of the convection, diffusion and source terms is introduced and employed. An appropriate design of the M-
matrix guarantees the positivity of the turbulence equation dependent variables for any time step, without the use of any
clipping. The procedure is employed and demonstrated using a k–x turbulence model. An efficient construction of the
Jacobian matrix is proposed, resulting in diagonal matrices. The model is tested by simulating three test cases of two-
and three-dimensional complex flow fields. Results from the numerical simulations show that the new procedure exhibits
very good convergence characteristics, is extremely robust, and always preserves the positivity of the turbulence variables.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computational fluid dynamics analysis in research and development as well as in design processes has
become a widespread tool. Naturally, realistic turbulent flow simulations solving the Reynolds-averaged
Navier–Stokes (RANS) equations are of primary interest. As a result of averaging, RANS equations contain
an extra term called the Reynolds stress tensor. Turbulence models that are based on the second-moment clo-
sure approach (Reynolds stress models) are regarded as the most advanced models. However, Reynolds stress
models tend to be complex and their application requires large computer resources.
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Two-equation closure models, such as the k–x or k–� models are probably among the most popular two-
equation turbulence models. There are two main issues concerning two-equation models. The first is con-
cerned with the ability of a model to best simulate the flow physics and the main characteristics of the flow.
The second issue stems from the actual implementation of the turbulence model in a flow solver and is the
objective of the current paper.

Turbulence model equations take the form of a transport equation that consists of convection, diffusion,
and source terms. The source term can be strongly nonlinear, containing a different time scale than the con-
vection and diffusion terms, and therefore may become the source of numerical stiffness. The numerical stiff-
ness calls for a special numerical treatment. An inappropriate treatment may result in numerical instability
and in a loss of positivity of the turbulence variables. The positivity of the turbulence variables must be kept
to guarantee a solid physical basis.

Huang and Coakely [11] conducted turbulent flow simulations using the k–� turbulence model of Launder
and Sharma [18] and the original k–x turbulence model of Wilcox [28]. They designed an unconditionally sta-
ble implicit scheme by diagonalizing the convection and diffusion Jacobians. In addition, the source term was
implicitly treated only with respect to its negative part. Menter [23] introduced his k–x shear-stress transport
model (SST) that was designed to overcome some of the k–� and k–x weaknesses. To construct a robust impli-
cit scheme, Menter linearized the negative part of the source term and added the absolute value of the cross-
diffusion element to the LHS diagonal. However, he had to use a limiter for the production term to prevent the
erroneous, unlimited increase of eddy-viscosity levels.

Mavriplis and Martinelli [22] conducted compressible turbulent flow simulations about airfoils using
unstructured grids. They chose different time integration methods for the Navier–Stokes equations and the
two-equation turbulence model, combined with a multi-grid accelerator. While the Navier–Stokes equations
were advanced in time using a multi-stage Runge–Kutta method, the turbulence model equations were inte-
grated using a point implicit method. Based on stability analysis, they were able to find a restrictive time step
that kept the positivity of the turbulence variables.

Liu and Zheng [20] derived a strongly coupled explicit time integration method for solving the Navier–
Stokes equations using the k–x turbulence model by Wilcox [28]. They increased the flow solver robustness
by treating the negative part of the source term implicitly. From their numerical simulations, they found that
x reached unrealistic low values, resulting in excessively large values of eddy viscosity. They applied a lower
cut-off value that was based on physical reasoning to prevent x from reaching too low values.

Batten et al. [2] used a splitting strategy to maintain the positivity of the turbulence variables. The convec-
tion and diffusion fluxes were split into the ‘implicit’ and ‘correction’ parts, where only the ‘implicit’ part was
treated implicitly. The source term was also split, into a positive and a negative part where only the negative
part was treated implicitly. They still had to introduce a small parameter into their scheme to prevent the tur-
bulence variables from becoming negative or reaching low values.

Ilinca and Pelletier [12,13] suggested an elegant procedure to preserve the positivity of the turbulence vari-
ables. They applied their scheme to the standard k–� model and the k–x model by Wilcox [28]. The idea
behind their scheme is rather simple. Turbulence variables are kept positive by switching them to logarithmic
variables, K = ln(k) and X = ln(x). Ilinca and Pelletier showed that the use of logarithmic variables dictate a
smoother variation, leading to an improved flow prediction, resulting in an increase to their flow solver robust-
ness. Yet, since the logarithmic variables are not suitable for homogeneous wall boundary conditions, as given
for the turbulent kinetic energy, i.e. k = 0, they used a wall function.

Based on the authors experience, application of the idea by Ilinca and Pelletier replaces the problem of
a lower bound with a problem of an upper bound. Namely, although the positivity of the turbulence var-
iable is guaranteed, the eddy viscosity can reach unrealistically large values. The problem of an upper
bound is also reflected in the work by Luo et al. [21] who adopted the logarithmic variables for a k–�
model using a wall function. They had to apply an upper limit to the turbulent viscosity to keep their
simulations stable.

Merkle et al. [25] suggested to split the exact Jacobian of the source term based on its eigenvalues. The
eigenvalue matrix is split into a positive and a negative part and is subsequently multiplied by the eigenvectors
to obtain two matrices. Implicit treatment is applied only to the matrix that resulted from the negative eigen-
values. Merci et al. [24] used the exact Jacobian method proposed by Merkle et al. [25] to derive the implicit
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Jacobian of the k–� model by Yang and Shih [31] and of the low-Reynolds k–x model by Wilcox [29]. How-
ever, they still had to apply a lower limit to the turbulence variables to preserve positivity.

Du and Wu [8,9] proposed another strategy, called the mixed analytical–numerical method in which, the
high-Reynolds terms of the source term are integrated analytically. Then, the analytical solution is incorpo-
rated into the numerical integration, together with the convection, diffusion, and low-Reynolds terms of
the source term. They applied their method to various k–� turbulence models. Du and Wu [8] successfully sim-
ulated the compressible flow about two airfoils and inside a transonic diffuser. Their simulations show that the
method is stable and that it has rapid convergence characteristics. However, their method can not guarantee
the positivity of the turbulence variables. Moreover, they had to limit the production part of source term in the
turbulence kinetic energy equation.

In the current paper, a general implicit procedure that preserves the positivity of the turbulence variables is
proposed. The new procedure is robust, stable, and positivity is kept without the use of any turbulence vari-
ables clipping. Moreover, in all simulations considered in the current work, no source term bounding was
required. The current paper focuses on the application of the new procedure to the k–x turbulence model.

2. Governing equations

The Navier–Stokes equations and a typical two-equation turbulence model governing three-dimensional
flows may be expressed in Cartesian coordinates and a dimensionless form as follows:
oU
ot
þ oðF c � F vÞ

oxj
¼ S ð1Þ
The vector U denotes the dependent variables vector:
U ¼

q

quj

E

qul

8>>><>>>:
9>>>=>>>; ð2Þ
where q is the fluid density, uj = {u, v, w}T are the Cartesian velocity vector components, E is the total energy
and qul = q{u1,u2}T denotes the dependent variables of the two-equation turbulence model.

The convection flux vector is
F c ¼

quj

qujui þ pdij

qujH

qujul

8>>><>>>:
9>>>=>>>; ð3Þ
where p denotes the pressure and H denotes the total enthalpy. The diffusion flux vector is given by
F v ¼
M1

Re1

0

sij

bj

lul

oul
oxj

8>>>><>>>>:

9>>>>=>>>>; ð4Þ
where M1 is the free stream Mach number and Re1 is the reference Reynolds number. The stress tensor, sij,
can be written as the sum of the viscous and the Reynolds stress tensors
sij ¼ sL
ij þ sT

ij ð5Þ
where the viscous part is
sL
ij ¼ l

oui

oxj
þ ouj

oxi

� �
� 2

3
dij

ouk

oxk

� �
ð6Þ
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Based on the Boussinesq assumption, the Reynolds stresses are
sT
ij ¼ lt

oui

oxj
þ ouj

oxi

� �
� 2

3
dij

ouk

oxk

� �
� 2

3
qkdij

Re1
M1

ð7Þ
where l and lt are the laminar and the turbulent viscosities, respectively, and k represents the turbulence ki-
netic energy. The terms bj are defined by
bj ¼ ujsij � qj ð8Þ
The heat conduction terms are given by
qj ¼ �
l
Pr
þ lt

Prt

� �
c

c� 1

o p
q

� �
oxj

ð9Þ
where Pr is the molecular Prandtl number, set as Pr = 0.72 and Prt is the turbulent Prandtl number, set to
Prt = 0.9. The turbulent diffusion flux vector is defined as
lul

oul

oxj
¼ ðlþ ru1

ltÞ
ou1

oxj
; ðlþ ru2

ltÞ
ou2

oxj

� 	T

ð10Þ
where rul
is the appropriate Prandtl numbers. In the present work, the source vector, denoted by S, arises only

due to the turbulence equations and therefore may be represented by
S ¼ 0; 0; 0; 0; 0; slf gT ð11Þ
where sl = {s1,s2}. The Navier–Stokes equations are closed using the equation of state for a perfect gas
p ¼ ðc� 1Þ E � 1

2
qðu2 þ v2 þ w2Þ

� �
ð12Þ
3. Numerical method

3.1. Spatial discretization

The integral form of Eq. (1) can be expressed as follows:
o

ot

Z
V

U dV þ
Z

A
ðF c � F vÞ �~n dA ¼

Z
V

S dV ð13Þ
where ~n is the outward-pointing unit normal vector to the control volume.
The semi-discretized form for a non-deforming grid is
V i
dU i

dt
¼ �

X
j2NðiÞ
ðF c;fij � F v;fij

ÞAfij þ SiV i ð14Þ
where Ui is the vector of cell-averaged dependent variables and Si is the cell source term. The terms F c;fij and
F v;fij are the convection and diffusion fluxes normal to the interface fij, respectively. The term Vi is the cell vol-
ume and t is the time step. The term Afij is the face area and N(i) is the set of cell neighbors.

The convection flux vector is computed at the cell interface by using the HLLC scheme as proposed by Bat-
ten et al. [2]. For a first order accurate convection flux, the left and right state vectors are taken as the corre-
sponding cell center values. For higher accuracy, information beyond the nearest neighbors is required. In the
present study, second order accuracy is achieved by a linear reconstruction using Green’s theorem based on
the procedure developed by Jawahar and Kamath [15]. The limiter proposed by Venkatakrishnan [27] is used
to suppress oscillations in the solution.

The diffusion flux vector is discretized employing the central differencing suggested by Jawahar and
Kamath [15] as a part of their effort to construct a uniform procedure for the discretization of the Navier–
Stokes equations. The primitive variables and the laminar and turbulent viscosities appearing in the diffusion
flux are obtained by simple averaging of the two adjacent cell center values.
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3.2. Time integration

The most simple time integration method is the explicit time integration, usually combined with a multi-
grid accelerator. Explicit schemes are simple to code and to parallelize. However, due to the CFL restric-
tion, the time step is severely limited and the time integration required can be impractical for realistic three-
dimensional flows. Alternatively, implicit time integration benefits from higher time steps and better stabil-
ity and convergence characteristics. Implicit time integration of the Navier–Stokes and the turbulence equa-
tions can be conducted in a coupled or in an uncoupled manner. Although coupled integration may result
in a more efficient solution in terms of CPU time [1], an uncoupled procedure is easy to implement and it
provides enhanced flexibility in designing special treatment for the turbulence model equations. Therefore,
the time integration that is adopted herein is the implicit method in an uncoupled manner. Since the pres-
ent work concerns steady state solutions only the backward Euler-implicit first-order time integration is
used.

Using time linearization, Eq. (14) can be rewritten in a general delta form as follows:
V
Dt

I � oR
oU

� �n

DU n ¼ Rn ð15Þ
where I is the identity matrix and
Rn ¼ �
X

~F nAf þ VSn ð16Þ
and ~F ¼ F c;fij � F v;fij . The D operator is the increment between time level n and n + 1. Note, the Jacobian oR
oU is

properly derived for an uncoupled method. Eq. (15) is solved using the block lower-upper Gauss–Seidel (BLU-
SGS) developed by Chen and Wang [5]. The BLU-SGS scheme is similar to the original LU-SGS approximate
factorization scheme developed by Jameson and Yoon [14] with one exception. In contrast to the LU-SGS
scheme, in the BLU-SGS scheme the block diagonal exact Jacobians are retained. A local time step is used
to accelerate the convergence.
4. Unconditionally positive time integration of the turbulence model equations

For convenience and consistency, the same numerical scheme that is used for the time integration of the
Navier–Stokes equations is utilized. The advantage of utilizing the same scheme is further realized when con-
ducting unsteady flow simulations.

For simplicity of notation, the set of the discretized turbulence model equations is extracted from Eq. (15)
and it is presented in a similar fashion to Eq. (15), namely,
V
Dt

I � oRt

oU t

� �n

DU tn ¼ Rtn ð17Þ
where the vector Ut = {qu1,qu2}T denotes the dependent variables of the turbulence model equations and the
vector Rt signifies the right hand side (residual) of the discretized turbulence model equations.

The goal of the current work is to design the left hand side of Eq. (17), such that the positivity of the vector
U tnþ1

is guaranteed for any positive vector U tn
and for any time step Dt > 0. The approach that is adopted

herein is a unified approach. It treats the convection, diffusion, and source terms implicit operators in a similar
manner. The following definitions are brought to clarify the construction of an unconditionally positive impli-
cit procedure.

Definition 4.1 (Unconditional positivity). Let DU tn
be the increment between time levels defined by

DU tn � U tnþ1 � U tn
. A numerical method is unconditionally positive, if U tnþ1

> 0 for any given U tn
> 0

and for any time step Dt > 0.



Y. Moryossef, Y. Levy / Journal of Computational Physics 220 (2006) 88–108 93
Definition 4.2 (Nonnegative, positive diagonal (NPD) matrix). A matrix A = (aij 2 Rn·n) is a nonnegative posi-
tive diagonal matrix if aij P 0 for j 6¼ i and aii > 0.

Definition 4.3 (M Matrix). Consider a matrix B = (bij 2 Rn·n) such that bii > 0 and bij 6 0 for j 6¼ i. The matrix
B can then be expressed in the form
B ¼ sI � C; s > 0; C P 0; ð18Þ
Such a matrix B = (bij 2 Rn·n) for which s P q(C), q(C) is the spectral radius of the matrix C, is called an M-
matrix [3].

Corollary 4.1. A matrix B = (bij 2 Rn·n) is an M-matrix iff its entries satisfy the following conditions

(1) bii > 0

(2) bij 6 0, j 6¼ i

(3) bii þ
Pn
j¼1
j 6¼i

bij > 0

The last definition is very helpful in designing an M-matrix and from here on any reference to the definition
of an M-matrix is with regard to Corollary 4.1.

In the context of the current work, the most important features of an M-matrix are: first, its inverse exists;
and second, the inverse is a nonnegative diagonal positive (NPD) matrix [3]. These features are found to be
pivotal in the design of an unconditionally positive numerical scheme, as can be seen from the following the-
orem and its proof.

Theorem 4.1. Let a general numerical scheme be defined as
M1U tnþ1 ¼ M2U tn ð19Þ

where the matrix M1 is an M-matrix and the matrix M2 is an NPD matrix, independent of the time step. Then the

numerical scheme is unconditionally positive.

Proof 4.1. Since the matrix M1 is an M-matrix its inverse matrix, M�1
1 , exists. Therefore the numerical scheme

described in Eq. (19) can be rewritten as
U tnþ1 ¼ M�1
1 M2U tn ð20Þ
In addition, both matrices M�1
1 and M2 are NPD matrices, independent of the time step. Hence, the matrix

M�1
1 M2 is also an NPD matrix, for any time step, Dt > 0. Therefore, for any given positive vector U tn

and
any time step, Dt > 0, the vector U tnþ1

is also positive. This completes the proof. h

An unconditionally positively scheme can be designed by rewriting Eq. (17) in terms of Theorem 4.1.
Inspired by the numerical treatment of Spalart and Allmaras [26] to their one equation turbulence model,
the construction of such a scheme is presented below:

Let the residual of the turbulence equations, Rt, be rewritten as
Rt ¼ bRtU t ð21Þ
where bRt is the matrix defined by
bRt ¼ 1

2

Rt
1

U t
1

Rt
1

U t
2

Rt
2

U t
1

Rt
2

U t
2

264
375 ð22Þ
and therefore
oRt

oU t ¼ bRt þ obRt

oU t U t ð23Þ



Remark 4.1. It should be emphasized that the reformulation of the right hand side vector, as defined in Eq.
(21), is employed to derive the implicit operator only and that the right hand side vector remains unchanged.

Further, in terms of Eq. (23), the implicit delta form of the turbulence model equations (Eq. (17)) can be
split and rewritten as
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V
Dt

I � bRt þ obRt

oU t U t

 !" #n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N1

U tnþ1 ¼ V
Dt

I � obRt

oU t U t

 !" #n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N2

U tn þ ðRtn � bRtn
U tnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

V rl

ð24Þ
To design an unconditionally positive scheme, Eq. (24) should satisfy the following conditions. First, it should
be shown that the vector Vrl is zero or that is could be brought to the form
V rl ¼ N 3U t ð25Þ

where N3 is an NPD matrix; and second, the matrices N1 and N2 should be adjusted to form an M-matrix and
an NPD matrix, respectively. Theoretically, the vector Vrl is identically zero (see Eq. (21)). Practically, it can
be guaranteed only if the spatial discretization on the left hand side is identical to that of the right hand side.

The matrix N1 is actually the implicit operator of Eq. (17) and the matrix N2 originates from the same oper-

ator. In designing N1 to be an M-matrix, one should verify that all terms in the matrix obR t

oU t U t are negative. This
guarantees that N2 is an NPD matrix and that the turbulence model equations have been brought to the The-
orem 4.1 form. However, the design of the appropriate N1 matrix is not straight forward and it requires fur-
ther modifications. As will be shown, flexibility in designing the scheme is enhanced by splitting the residual
vector into its positive and negative parts. Moreover, the construction of the appropriate N1 matrix is
simplified.

Let the right hand side vector, Rt, be divided into a positive and a negative part as follows:
Rt ¼ Rt
p � Rt

n

Rt
p ¼

1

2
ðjRtj þ RtÞ

Rt
n ¼

1

2
ðjRtj � RtÞ

ð26Þ
then the matrix N1 may be rewritten as
N 1 ¼
V
Dt

I þ bRt
n � bRt

p

� �
þ obRt

n

oU t U t �
obRt

p

oU t U t

 !
ð27Þ
The treatment of the diagonal entries, namely N1ii, is separated from the treatment of the off diagonal entries,
N1ij. Three different strategies can be followed to appropriately modify the diagonal entries of the N1 matrix.

4.1. Strategy 1–1

Consider all the diagonal elements such that only positive contributions are added as follows:
N 1ii �
V
Dt

I ¼ bRt
n þMax �bRt

p; 0
h i

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
identically zero

þMax
obRt

n

oU t U t; 0

" #
þMax �

obRt
p

oU t U t; 0

" #
ð28Þ
4.2. Strategy 1–2

The diagonal entries �bRt
p and � obR t

p

oU t U t are neglected, resulting in
N 1ii �
V
Dt

I ¼ bRt
n þMax

obRt
n

oU t U t; 0

" #
ð29Þ
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4.3. Strategy 1–3

Consider all the diagonal entries as follows:
N 1ii �
V
Dt

I ¼Max bRt
n � bRt

p; 0
h i

þMax
obRt

n

oU t U t �
obRt

p

oU t U t; 0

" #
ð30Þ
There are two simple options to build the off diagonal entries of the matrix N1.

4.4. Strategy 2–1

t
N 1ij ¼ �bRp; j 6¼ i ð31Þ
4.5. Strategy 2–2
N 1ij ¼Min½bRt
n � bRt

p; 0�; j 6¼ i ð32Þ
The above described strategies guarantee only the first two conditions of Corollary 4.1. It can be shown that
the third condition may be enforced if one adopts strategy 1–1 for the diagonal entries combined with strategy
2–2 for the off diagonal entries. Note, adopting strategies 1–1 and 2–2 results in a modification of bRt. There-
fore, the vector Vrl in Eq. (24) is no longer guaranteed to be zero. However, it can be shown that it satisfies Eq.
(25) and therefore it does comply with Theorem 4.1.

The above strategies show how to construct an M-matrix from the matrix N 1 � V
Dt I . Based on Corollary 4.1

it is clear that the matrix N1 is an M-matrix for any time step, Dt > 0. This section describes a general approach
to design an unconditionally positive scheme for a typical two-equation turbulence model. From here on the
paper focuses on k–x turbulence models.
5. Efficient treatment of the implicit Jacobian of the k–x turbulence model equations

To simplify the construction of all the block matrices, an efficient procedure is introduced. The idea is to
write each of the two turbulence equations as if they were two uncoupled equations. Such a procedure results
in block matrices that are all diagonal matrices. The savings in terms of memory storage and CPU time are
obvious. As already noted in Remark 4.1, the reformulation of the right hand side vector that is presented
below is for the purpose of construction of the left hand side operator only. For simplicity, the idea is pre-
sented for a typical high Reynolds k–x turbulence model:

(1) Substitute the x terms that appear in the turbulence kinetic energy equation using the explicit expression
of lt, i.e., x ¼ qk

lt
.

(2) Substitute the k terms that appear in the specific dissipation rate equation using the explicit expression of
lt, i.e., k ¼ xlt

q .
(3) Substitute the turbulence viscosity term, lt, that appeared in the original equations (prior to the appli-

cation of steps 1 and 2), with qk
x .

(4) Derive the implicit operator according to the procedure described in the previous section.

As mentioned above, one may interpret the procedure as an attempt to form two uncoupled equations for
each of the dependent variables by substitution. As a results, for the purpose of generating the left hand side
operator, the residual vector may be expressed in the form (bearing in mind Remark 4.1):
Rt ¼
Rt

1½qk; ðqxÞn; ln
t �

Rt
2½ðqkÞn; qx; ln

t �

� 	
ð33Þ
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Since Rt
1 is now a function of qk only, and since Rt

2 is a function of qx only, it is justified to further simplify the

matrix bRt (Eq. (22)) to take the form:
bRt ¼
ðR1Þtn
qk �

ðR1Þtp
qk 0

0 ðR2Þtn
qx �

ðR2Þtp
qx

24 35 ð34Þ
and the Jacobian matrix obR t

oU t U t becomes
obRt

oU t U t ¼
o

oðqkÞ
ðR1Þtn
qk �

ðR1Þtp
qk

� �
qk 0

0 o
oðqxÞ

ðR2Þtn
qx �

ðR2Þtp
qx

� �
qx

264
375 ð35Þ
where ðRlÞtn and ðRlÞtp are as defined in Eq. (26). Note, as mentioned above, both Jacobian matrices are indeed
diagonal.

In general, the source terms are treated as a volumetric source (also adopted in the current work). There-
fore, off diagonal entries in the matrix N1 arise only from the convection and diffusion terms. Consequently,
the only implicit operator that fulfills the three conditions of an M-matrix (see Corollary 4.1) for the convec-
tion and diffusion terms is derived by adopting strategy 1–1 for the diagonal entries combined with strategy 2–
2 for the off diagonal entries. The evaluation of the implicit operator of the source term can be conducted by
using one of the three strategies 1–1, 1–2, or 1–3. Based on numerical experiments it is found that the implicit
source operator that is designed according to strategy 1–3 exhibits the best convergence rate. Therefore, strat-
egy 1–3 is chosen in the current work. In addition, based on the discussion concerning Eq. (24), the convection
term of the turbulence model equations is discretized using a first order operator.
6. The k–x–TNT turbulence model

In the present work, the proposed procedure is applied to the k–x turbulence model that was proposed by
Kok [16], also known as the TNT model. The model takes the form as described in Eqs. (1)–(11) where u1

denotes the turbulence kinetic energy, namely u1 = k and u2 denotes the turbulence specific dissipation rate,
namely u2 = x. The source vector, St, takes the general form:
St ¼
P k � b�qkx Re1

M1

a x
k P k � bqx2 Re1

M1
þ CD

( )
ð36Þ
The production term, Pk, is given by
P k ¼ sT
ij

oui

oxj

M1

Re1
ð37Þ
The Prandtl numbers are rx = 0.5 and rk ¼ 2
3
. The remaining model constants are b = 0.075, b* = 0.09,

a ¼ b
b� �

rxj2ffiffiffiffi
b�
p , with j = 0.41. The source term CD is given as
CD ¼ rd
q
x

Max
ok
oxj

ox
oxj

; 0

� �
M1

Re1
ð38Þ
where rd = 0.5 and the turbulent viscosity is defined as
lt ¼ qk=x ð39Þ
Details of the application of the procedure to the model may be found in Appendix A.
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7. Results and discussion

Three well known test cases are simulated and examined using the new implicit procedure. The aim of the
tests is twofold: first to verify that the proposed procedure indeed preserves positivity of the turbulence vari-
ables, for various cases; and second, to study the convergence characteristics of the new procedure.

The first test case is the separated flow about a NACA 4412 airfoil at high incidence. The second test is the
transonic flow about the RAE2822 airfoil. The third test is the high incidence flow about a tangent-ogive cyl-
inder. Although the flow prediction accuracy of the turbulence model is not the main focus of the current
work, two different sets of grids were employed for each of the two-dimensional test cases with various
CFL numbers examining grid convergence using the proposed procedure. Two CFL numbers and one grid
was employed for the three-dimensional case.

In this section, the k–x turbulence model is denoted as TNT and any reference to the Navier–Stokes equa-
tions is denoted by NS. It is important to reemphasize that in all conducted simulations, there was no use of
any kind of clipping to the turbulence variables. Nor was there any use of any kind of bounding to any terms
of the turbulence model equations.

7.1. Boundary conditions

The boundary conditions considered in this work are set as follows. The inflow turbulent kinetic energy is
evaluated according to the relation k ¼ 3

2
ðTu �M1Þ2 where Tu is the turbulence intensity. The inflow turbu-

lence specific dissipation rate is set so that the normalized inflow turbulence viscosity is equal to lt1 ¼ 0:1.
At the outflow boundary, the turbulence variables are extrapolated from the interior. The wall boundary con-
dition for the turbulent kinetic energy is set to k = 0, while the turbulent dissipation rate at the wall is deter-
mined according to Menter [23], and is set to x ¼ 10 6l

qbðDz1Þ2
ðM1Re1
Þ2, where Dz1 is the distance of the first cell

center, neighboring the wall, from the wall.

7.2. NACA 4412 airfoil

The NACA 4412 test is a well known test for high lift separated flows. In the current work a single incidence
of a = 13.87� at a Reynolds number of Re1 = 1.52 · 106 is examined and compared to the experimental
results of Coles and Wadcock [6]. At this incidence, a steady trailing-edge separation is present. Two C-type
grids were employed as described in Table 1.

For each of the two grids, the simulations were conducted for 5000 steps using three CFL numbers: 25.0,
50.0 and 100.0. Although the experiments are known to involve a transitional boundary layer, it is not mod-
eled in the current work.

Fig. 1 shows a comparison of the calculated stream-wise velocity profile with the experimental data at six
stations along the upper airfoil surface (g is the axis perpendicular to the airfoil surface, see a schematic
description in Fig. 2). The calculated results that are presented in the figure are obtained using the fine grid
(there were only marginal differences from the results obtained with the coarse grid). The prediction obtained
using the TNT model is in good agreement with the experimental results.

The convergence of the turbulence model equations and the Navier–Stokes equations is presented in Fig. 3.
The TNT model exhibits excellent convergence for the CFL numbers of CFL = 25.0 and CFL = 50.0, for all
the grids that were considered. Also noteworthy is the fact that the convergence characteristics of the turbu-
lence equations and of the Navier–Stokes equations are similar. Consequently, it is recognized that the stabil-
ity and convergence of the turbulence equations and of the Navier–Stokes equations are in some sense
Table 1
Computational grids for the NACA 4412 airfoil

Grid Size Dz1

Coarse 241 · 65 1 · 10�5

Fine 345 · 101 2 · 10�6
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Fig. 1. Comparison between calculated and measured stream-wise velocity profiles at six stations for the NACA 4412 airfoil: �,
experiments [6]; —, TNT model.

Fig. 2. Schematic description of coordinate axes for the NACA 4412 airfoil.
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coupled. This can be realized from the fact that the turbulence equations are integrated using the same implicit
scheme that is used for the Navier–Stokes equations. Yet, one should note that the source term influence is not
included in the stability analyses. The similar convergence characteristics are in accordance with the findings
presented by Merci et al. [24]. Namely, although a restriction on the time step due to the source term is
required to keep a stable simulation, in practice, the time step limitation derived from the convection and dif-
fusion terms is more restrictive.

To demonstrate the positivity of the turbulence variables, a plot of the minimum turbulent kinetic energy
and the minimum turbulence specific dissipation rate history is presented in Fig. 4. The results that are
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Fig. 4. Minimum k–x turbulence model dependent variables time history; NACA 4412 airfoil.
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presented in the figure were obtained using the coarse grid and a CFL number of CFL = 100.0. No negative
values of k or x, nor extremely low values of k or x appeared throughout the duration of the numerical sim-
ulations. Moreover, the variation of k and x is quite monotonic and both variables reach their steady state
value within 1000 and 250 iterations, respectively. Note that these results are taken from the least stable case,
using the highest CFL number, yet the minimum values of the turbulence variables exhibit a monotonic, non-
negative behavior.

7.3. RAE2822 airfoil

The RAE2822 supercritical airfoil is another well know test case. It is used for the validation of flow solvers
with respect to transonic turbulent flows. The experiment by Cook et al. [7] covers a wide variety of flow con-
ditions. The flow conditions that are used in the current work (their test case number 10) are: a Mach number
of M1 = 0.75, a Reynolds number of Re1 = 6.5 · 106, and an incidence angle of a = 3.19�. In the experi-
ments, transition has been tripped on both the upper and lower surfaces, near the leading edge. Various wind
tunnel corrections have been suggested in previous studies. In the present study, the corrections used in the
EUROVAL project [10] are adopted. These corrections correspond to the following flow conditions: a Mach
number of M1 = 0.754, a Reynolds number of Re1 = 6.2 · 106, and an incidence angle of a = 2.57�.

Test case number 10 represents a challenging test case for a compressible flow solver. It exhibits a very
strong shock which induces boundary layer separation. Note that in the present simulation, the transition
was not modeled. Two C-type grids were employed in the current test as given in Table 2.

Numerical simulations were conducted for both grids and two CFL numbers, CFL = 5.0 and CFL = 10.0,
for 5000 steps. Fig. 5 contains a comparison of the calculated surface pressure coefficient with that of the
experiment [7]. The TNT model predicted the location of the shock downstream compared to the shock loca-
tion that was experimentally observed. In addition, the pressure recovery after the shock is under predicted.
These deficiencies are also found in the work by Catalano and Amato [4] using several k–x and k–� models,
and in the work of Lien and Kalitzin [19] using the v2 � f four equations turbulence model. Moreover, in all of
Table 2
Computational grids for the RAE2822 airfoil

Grid Size Dz1

Coarse 281 · 71 1 · 10�5

Fine 343 · 95 5 · 10�6
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Fig. 5. Comparison between calculations and measured surface pressure coefficient distribution of RAE2822 airfoil: �, experiments [7];
—, TNT model.
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the simulations, the leading edge peak is not captured, most likely due to the fact that the transition was not
modeled.

Fig. 6 presents a comparison of the calculated stream-wise velocity with the experimental data at three sta-
tions along the upper airfoil surface (g is the axis perpendicular to the airfoil surface). At x = 0.404 the flow is
attached and the TNT model prediction is in excellent agreement with the experimental results. In contrast,
the model fails to accurately predict the velocity profile at the stations x = 0.65 and x = 0.9, stations that
are located downstream of the shock.

A plot of the convergence history that was obtained using the coarse grid is presented in Fig. 7. One can see
that the observation made about the convergence characteristics of the NACA 4412 case, holds for the
RAE2822 case as well. Moreover, compared to the Navier–Stokes equations, the convergence of the turbu-
lence model equations is even smoother. Specifically, the plot of the convergence history of the turbulence
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Fig. 6. Comparison between calculated and measured stream-wise velocity profile for the RAE2822 airfoil: �, experiments [7]; —, TNT
model.
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model equations lacks the spikes that are present in the Navier–Stokes equations convergence history plot. In
addition, the TNT exhibits excellent convergence behavior. The above described behavior is also common to
the results obtained using the fine grid.

7.4. Tangent-ogive cylinder

The flow about a tangent-ogive cylinder at high incidence has been extensively studied in the past, both
numerically and experimentally. One of the most comprehensive experiments concerning the flow about ogive
cylinders was conducted by Lamont in the NASA Ames 12-ft pressure wind tunnel [17]. The geometry of the
tangent-ogive cylinder was comprised of a 3.5 caliber ogive and a 4 diameter after-body. Detailed surface-pres-
sure distributions were obtained at Reynolds numbers ranging from ReD = 2.0 · 105 to ReD = 4.0 · 106 and
angles of attack ranging from a = 20� to a = 90�.

Out of the wide range of flow conditions, the test case that was used for the current work is that of the flow
at a Mach number of M1 = 0.2, an incidence angle of a = 20�, and a Reynolds number of Re1 = 4 · 106. The
computed body length was extended 3.0 diameters beyond the physical length of the body, to a total of 10.5
diameters, in order to minimize the effect of the outflow boundary conditions. A single grid having the dimen-
sions 65 · 72 · 75 was generated. The computational mesh extended to 14 body diameters and the first grid
point neighboring the wall was placed at 1 · 10�5 diameter from the body.

Based on the experimental results and the wide knowledge concerning the flow at the relatively small inci-
dence angles, the flow field was assumed to be symmetric and therefore, the computational mesh was built
accordingly.

The tangent-ogive cylinder test case was chosen to demonstrate that the newly proposed procedure works
for complex separated three-dimensional flows as well. The simulations were conducted for two CFL num-
bers, CFL = 20.0 and CFL = 40.0. Fig. 8 shows a comparison of the calculated circumferential surface pres-
sure coefficient at two longitudinal stations with the experimental results (the origin of the coordinate system is
placed at the tip with the x coordinate coinciding with the body symmetry axis and pointing backwards). The
comparisons show good agreement of the calculated results with the experimental data.

The convergence history for both CFL numbers is presented in Fig. 9. The convergence plots show excellent
convergence for both CFL numbers with similar convergence characteristics. The flow converges to its steady
state solution within 1500 steps only, which is quite a low number for the complex flow in question. It is again
shown that the convergence behavior of the Navier–Stokes equations and the turbulence model equations is
also similar. Throughout the duration of all simulations in this case, no occurrences of negative nor extremely
small values of the turbulence variables were observed.

7.5. Effect of perturbed solution on positivity and convergence

To further examine the robustness of the newly proposed procedure, the following numerical experiment
was conducted using the RAE2822 airfoil test case with the coarse grid. First, the solution was run for
1000 steps using a CFL number of 10.0. At this point, the residual of the Navier–Stokes equations dropped
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Fig. 8. A comparison of the circumferential surface pressure coefficient at two longitudinal stations: (a) x = 3.5, (b) x = 6.0: �, experiments
[17]; —, TNT model.
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two orders of magnitude and the residual of the turbulence model equations dropped four orders of magni-
tude. However, the solution was not fully converged yet. Next, a disturbance was placed in a region defined by
0.4 < x < 0.9 and zu < z < 0.3 where zu is the upper airfoil surface (See schematic description in Fig. 10). The
domain was chosen to include the shock were the solution is known to exhibit its largest variations. The nature
of the disturbance was such that the value of the turbulent kinetic energy was arbitrarily set to a certain extre-
mely low value, kd. Then, the solution was restarted from that point using the same CFL number
(CFL = 10.0) and the values of both the turbulent kinetic energy and the turbulence specific dissipation rate
were closely followed. Three simulations, using three values of kd, namely, kd = 1. · 10�20, kd = 1. · 10�30,
and kd = 1. · 10�40 were conducted.

For all three simulations, the turbulence specific dissipation rate showed no noticeable changes (not shown
here). The turbulent kinetic energy gradually recovered to higher values and eventually the solution returned
to its original convergence course. Fig. 11 shows the history of the minimum turbulent kinetic energy in the
flow field. All three plots show an initial drop in the minimum turbulent kinetic energy. The location of the
minima was found to always reside very close to the airfoil surface. This behavior can be explained by the fact
that the destruction is dominant near the wall. Following the initial drop, the minimum values of turbulence
kinetic energy started to rise toward their converged value. This rise is due to the fact that the convection and
diffusion terms gradually started to affect the solution. The most important fact arising from this numerical
experiment is that the turbulence variables remained positive at all times with a fast recovery. Moreover,
Fig. 10. Schematic description of the region of disturbance in the RAE2822 airfoil flow field.
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despite the large numerical disturbance, the convergence characteristic remained the same, and after the recov-
ery of the turbulent kinetic energy values, the whole solution returned to its normal convergence course (see
Fig. 12).

8. Concluding remarks

A new unconditionally positive implicit procedure for two-equation turbulence models is developed and
presented. The new procedure is validated by applying it to the k–x–TNT [16] turbulence model. The positiv-
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ity of the turbulence variables is analyzed and proved. The scheme robustness and stability are demonstrated
using two- and three-dimensional complex flows.

The consistent performance of the implicit procedure is evident from the numerical simulations results. The
robustness of the procedure is demonstrated by conducting a special numerical experiment in which a signif-
icant disturbance is introduced into the flow field. The numerical experiment shows that for any positive value
of the turbulent kinetic energy, even an artificially, extremely low value, positivity is retained. Thus, it is shown
that the new scheme follows unconditional positivity as defined in Definition 4.1.

The implicit procedure is characterized by very good convergence rates. Moreover, the convergence behav-
ior of the turbulence equations is similar to that of the Navier–Stokes equations. This is because both are time
integrated using the same implicit scheme. The similar convergence shows that the new procedure does not
hinder the convergence of the flow solver.

The flexibility in the implementation of the new procedure results in another clear advantage. The implicit
procedure can be applied in conjunction with other implicit schemes that are used to solve the Navier–Stokes
equations. Further, the procedure can be easily applied to various k–x turbulence models. Particularly, the
procedure was successfully applied to the k–x–SST model by Menter [23], and to the low and high Reynolds
number turbulence models by Wilcox [29,30] and the results exhibited similar behavior to the k–x–TNT
model.

The excellent convergence characteristics are further realized in the context of unsteady flow simulations,
especially when the two sets of equations are solved in an uncoupled manner. The extension of the implicit
procedure to higher temporal accuracy is straight forward. Using the concept of dual-time stepping it can
be proven that an unconditionally positive scheme may be derived for any physical and artificial time steps.
Preliminary results of the extended procedure employed to simulate unsteady flow using the concept of dual-
time stepping demonstrated the positivity of the turbulence variables.
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Appendix A

A practical implementation of the new procedure is given hereby for the k–x–TNT turbulence model [16].
Note, throughout the practical implementation, it is essential to bear in mind Remark 4.1.

The details of the procedure implementation concerning the convection and diffusion fluxes are given
for a one-dimensional flow in Cartesian coordinates. Only the turbulence kinetic energy flux terms are con-
sidered. The implementation for the turbulence specific dissipation rate is similar. First, the treatment of
the implicit diffusion part is addressed. The diffusion flux term of a typical cell i at the interface fij is given
as
F v;fij ¼
M1

Re1
ðlþ rkltÞ

ok
ox

� �
ðA:1Þ
As already mentioned in the paper, the values of the laminar and turbulent viscosities at the interface fij are
calculated by averaging the two corresponding cell values, namely, cell i and its neighbor cell j. In addition, the
interface gradient is evaluated using central differencing. Therefore, the diffusion flux is evaluated as:
F v;fij
¼ M1

Re1

1

2
li þ lj

� 
þ rk lti þ ltj

� �h i kj � ki

xj � xi
ðA:2Þ
Step 1 states that x should be substituted with qk
lt

wherever it appears in the turbulence kinetic energy equation.
Since x does not appear in the diffusion flux, step 1 is skipped. Next, step 3 is employed and the diffusion flux
is given as:
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F v;fij
¼ M1

Re1

1

2
ðli þ ljÞ þ rk

qk
x

� �
i

þ qk
x

� �
j

" #( )
kj � ki

xj � xi
ðA:3Þ
Next, the first part of the diffusion Jacobian matrix, (see Eq. (23)) namely, bF v is derived. One should distin-
guish between the treatment of the diagonal and the off diagonal of the Jacobian bF v. The diagonal part,
ðbF v;fijÞii, is derived as follows:
ðbF v;fij
Þii ¼

M1

Re1

1

2

li þ lj

ðqkÞi
þ rk

1

x

� �
i

þ
qk
x

� 
j

qkð Þi

" #( )
kj � ki

xj � xi
ðA:4Þ
Similarly, the off diagonal part, ðbF v;fij
Þij, is given as
bF v;fij

� �
ij
¼ M1

Re1

1

2

li þ lj

ðqkÞj
þ rk

qk
x

� 
i

ðqkÞj
þ 1

x

� �
j

" #( )
kj � ki

xj � xi
ðA:5Þ
The additional contribution of the implicit operator, obF v

oðqkÞ ðqkÞ, to the diagonal is given by
obF v;fij

oðqkÞ ðqkÞ
 !

ii

¼ M1

Re1

1

2
�

li þ lj

ðqkÞi
� rk

qk
x

� 
j

ðqkÞi

" #
kj � ki

xj � xi
� li þ lj þ rk

qk
x

� �
i

þ qk
x

� �
j

" #( )
1

qiðxj � xiÞ

( )
ðA:6Þ
In the present work, the evaluation of the convection flux term is based on the HLLC Riemann solver.
Although the implementation of the implicit operator of the convection term corresponds to the HLLC solver,
its application to other solvers is straightforward. The one-dimensional HLLC solver of the turbulent kinetic
energy in Cartesian coordinates is defined by
F c;fij ¼

ðqukÞi Si > 0

ðq�SM kÞi Si 6 0 < SM

ðq�SM kÞj SM 6 0 6 Sj

ðqukÞj Sj < 0

8>>><>>>: ðA:7Þ
where (q*)i = [q(S � u)]i (for specific definitions of the signal velocities Si, Sj and SM see the paper by Batten

et al. [2]). The diagonal implicit operators, namely, ðbF c;fijÞii and ðo
bF c;fij

oðqkÞ ðqkÞÞii , are calculated as follows:8

ðbF c;fijÞii ¼

ui Si > 0

ðSi � uiÞSM Si 6 0 < SM

ðq�SM kÞj
ðqkÞi

SM 6 0 6 Sj

ðqukÞj
ðqkÞi

Sj < 0

>>>>><>>>>>:
ðA:8Þ

obF c;fij

oðqkÞ ðqkÞ
 !

ii

¼

0 Si > 0

0 Si 6 0 < SM

� ðq
�SM kÞj
ðqkÞi

SM 6 0 6 Sj

� ðqukÞj
ðqkÞi

Sj < 0

8>>>>><>>>>>:
ðA:9Þ
The off-diagonal Jacobian of the convection flux is obtained in similar fashion to the diffusion implicit
operator.

Finally, the source term of the TNT turbulence model is defined as
St ¼
P k � b�qkx Re1

M1

a x
k P k � bqx2 Re1

M1
þ CD

( )
ðA:10Þ
For the sake of simplicity, the cross-diffusion term, CD ¼ rd
q
x Max½ ok

oxj

ox
oxj
; 0� M1

Re1
, is treated as a constant.
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According to steps 1 and 2, the source term may be rewritten as follows:
St ¼
lt

oui
oxj
þ ouj

oxi

� �
� 2

3
dij

ouk
oxk

h i
oui
oxj

M1
Re1
� 2
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8><>:
9>=>; ðA:11Þ
In practice, step 2 is skipped since k does not appear in the turbulence specific dissipation rate equation.
Following step 3, the source term becomes
St ¼
qk
x

oui
oxj
þ ouj

oxi
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9>=>; ðA:12Þ
Then the diagonal term of the first part of the source term Jacobian, namely, ½bS t�, takes the form
½bS t� ¼ ½I �
1
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oxj
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and the second part of the Jacobian, namely, ½obS t

oU t U t� is given by
obS t

oU t U t
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